
RAI Tutorial-1

*Ubuntu 20 should be installed*

Installation of RAI with Python virtual environment

- First create new folder for RAI
- Create a virtual environment

python3 -m venv rai_venv

- Activate the Virtual Environment

source rai_venv/bin/activate

- Install Required Packages

pip install numpy scipy

python3 -m pip install robotic

- Test

python3 -c 'from robotic import ry; ry.test.RndScene()'

● If everything okay, continue with next step

Part 1) Frames

- Create new file: “part1.py”

- Download “mini.g” file from here:
https://github.com/MarcToussaint/robotics-course/tree/master/course4-Panda

- Inside of the “part1.py” add these lines:



from robotic import ry

C = ry.Config()

C.addFile('mini.g')

C.view()

C.watchFile('mini.g')

- Now you should see this screen:

● For detailed information, follow here:
https://marctoussaint.github.io/robotics-course/script.html#introduction

Part 2) Adding box to the environment

- Create new file: “part2.py”

● Now we will add the box step by step without creating another “.g” file

from robotic import ry

import time

C = ry.Config()



After necessary import and calling configuration, we will add our box:

C.addFrame('box') \

.setPosition([0, 0, .25]) \

.setShape(ry.ST.ssBox, size=[.5, .5, .5, .05]) \

.setColor([1, .5, 0]) \

.setMass(.1) \

.setContact(True)

Now visualize:

C.view()

time.sleep(5)

Here, we can play with the features of the box.

Size, color, position e.t.c

● We can also add the box with “.g” file.

- Create new file: “part2_gfile.py”
- Create new file “box.g”



box1: { X: "t(0 0 0.25) d(0 0 0 1)", shape: ssBox, size: [.5 .5 .5

.05], color: [1 .5 0], mass: .1, contact: true }

*Difference between “ssBox” and “box” is smooth edges and corners.*
*sphere-swept convex meshes *

- Now edit the “part2_gfile.py” with calling “watchFile”
- Change the position of the box to “(1 1 0.25)” while ConfigurationViewer is

open. see what is happening!
- Then you can understand one of the advantage of “.g” file

Part 3) Relative Positions

● Add second box to 1m above the first box:

C.addFrame(name="box2", parent="box1") \

.setShape(ry.ST.ssBox, size=[.5, .5, .5, .05]) \

.setRelativePosition([0,0,1]) \

.setColor([0,0,1])

- Display the position and the orientation of the second box: (Why it is not
[0,0,1]?)

f = C.frame("box2")

print("position:", f.getPosition())

print("orientation:", f.getQuaternion())



Part 4) Creating Two link Manipulator

- We are going to create a two link planar manipulator system in this tutorial.

- First create a sphere representing the hinge joint on the (0,0,0,)

zero { X:"T t(0 0 0) d(180 0 0 1)" shape:sphere mass=1 size=[0.

0. .2 .05]}

- Then create the first link

link1 { shape:capsule mass=1 size=[0. 0. .3 .05] color: [0 0

1]}

The size parameter is a list of four values that specifies the size of the shape in the
x, y, and z directions, as well as the radius of the shape.

- Connecting Link1 to world frame with joint

(zero link1) { joint:hingeX, pre:"T t(0 0 .00)" B:"T t(0 0 .2)" }

In the given code, hingeX is a type of joint that allows rotation around a single axis,
similar to a hinge. It is used to connect two body parts and specify their relative
motion.
The pre and B variables in the code specify the transformation matrices of the joint
before and after the rotation, respectively. The pre matrix specifies the position and
orientation of the joint axis in the local coordinate system of the first body part, while



the B matrix specifies the position and orientation of the joint axis in the local
coordinate system of the second body part

- Create the second link

link2 { shape:capsule mass=1 size=[0. 0. .3 .05] color: [1 0

0]}

- Connecting Link2 to Link1 by Hinge joint in X frame

(link1 link2) { joint:hingeX, pre:"T t(0 0.0 .15)" B:"T t(0 0.0

.15)" }

- Create an end effector

endeffector { shape:sphere mass=1 size=[0. 0. .2 .05] color:

[0 1 0]}

- Add joint to connect end effector to link2

(link2 endeffector) { joint:hingeX, pre:"T t(0 0.0 .18)" B:"T t(0

0.0 .0)" }

Finally, you should see that:

https://www.reddit.com/r/hingeapp/comments/1300kiu/hingex_hinge_megathread_part_2/


Part 5) Features
https://github.com/MarcToussaint/rai-python/blob/master/notebooks/1a-configuration
s.ipynb

https://github.com/MarcToussaint/rai-maintenance/blob/master/help/features.md

https://github.com/MarcToussaint/rai-python/blob/master/notebooks/retired/2-feature
s.ipynb

https://github.com/MarcToussaint/rai-python/blob/master/notebooks/retired/2-features.ipynb
https://github.com/MarcToussaint/rai-python/blob/master/notebooks/retired/2-features.ipynb


Part 6) Inverse kinematics

So we know that Forward Kinematics is finding positions with knowing joint angles.
Besides, IK is finding appropriate joint angles to achieve desired position. However,
there could be many joint configurations which are fit to the desired end effector
position. Therefore, optimization helps us to find the most efficient one according to
provided constraints and objectives. Although, we will see optimization topics with
more details, here we have an IK example with optimization.

from robotic import ry

import numpy as np

import time

C = ry.Config()

C.addFile(ry.raiPath('../rai-robotModels/scenarios/pandaSingle.g'))

C.view()

First we make the imports and add the necessary environment.

#this reference frame only appears in your workspace C - not the simulation!

target = C.addFrame('target', 'table')

target.setShape(ry.ST.marker, [.1])

target.setRelativePosition([0., .3, .3])

pos = target.getPosition()

cen = pos.copy()

C.view()

Now we add the target frame.

qHome=[ 0., -0.5, 0., -2., 0., 2., -0.5]

q0 = qHome.copy()

q1 = q0.copy()

q1[1] = q1[1] + .2

print(q0, q1)

qHome is the home configuration of the robot. For now, the current

configuration of the robot equals to home configuration.

# you'll learn about KOMO later - this defines a basic Inverse Kinematics

method

def IK(C, pos):

q0 = C.getJointState()

komo = ry.KOMO(C, 1, 1, 0, False) #one phase one time slice problem, with

'delta_t=1', order=0



komo.addObjective([], ry.FS.jointState, [], ry.OT.sos, [1e-1], q0) #cost:

close to 'current state'

komo.addObjective([], ry.FS.jointState, [], ry.OT.sos, [1e-1], qHome)

#cost: close to qHome

komo.addObjective([], ry.FS.positionDiff, ['l_gripper', 'target'],

ry.OT.eq, [1e1]) #constraint: gripper position

ret = ry.NLP_Solver(komo.nlp(), verbose=0) .solve()

return [komo.getPath()[0], ret]

The IK() function in the given code is an implementation of inverse kinematics (IK)
for a robot arm. Inverse kinematics is the process of determining the joint angles of a
robot arm that will result in a desired end-effector position and orientation. The IK()
function takes a configuration object C and a target position pos as input and returns
the joint configuration of the robot that achieves the target position.

The IK() function first gets the current joint state of the robot using the getJointState()
method. It then creates a KOMO object with the configuration object C and adds
three optimization objectives to it using the addObjective() method. The first
objective specifies that the cost should be minimized for joint angles that are close to
the current joint state. The second objective specifies that the cost should be
minimized for joint angles that are close to the home joint state. The third objective
specifies that the gripper position should be equal to the target position.

The KOMO constructor takes several arguments, including the configuration C, the
number of phases, the number of time slices per phase, the order of the optimization
problem, and a boolean flag that indicates whether to use the sparse solver.

The NLP_Solver() method is then used to solve the optimization problem and return
the joint configuration that achieves the target position. The getPath() method is
used to extract the joint configuration from the KOMO object, and the joint
configuration and the optimization status are returned as a list.

#pos= [0., .0, .0]

#target.setPosition(pos)

q_target, ret = IK(C, pos)

print(ret)

C.setJointState(q_target)

C.view()

Here, we first compute the joint configuration of the robot that achieves the target
position using the IK() function and store it in q_target. The optimization status is
stored in ret and printed using the print() function. The joint configuration of the



robot is then set to q_target using the setJointState() method, and the scene
is updated using the view() method to show the new joint configuration.

Now let’s do it in the loop for better understanding:

for t in range(20):

time.sleep(.1)

pos = cen + .98 * (pos-cen) + 0.02 * np.random.randn(3)

target.setPosition(pos)

q_target, ret = IK(C, pos)

print(ret)

C.setJointState(q_target)

C.view()

The main loop of the code updates the position of the target frame and calls the IK()
function to compute the joint configuration of the robot that achieves the target
position. The joint configuration is then set using the setJointState() method and the
scene is updated using the view() method.

Part 7) Theory of IK
So, we have seen how IK works in simulation. Now, we will solve IK numerically from
scratch. Here, we will use the theory behind it and we help our robot to reach the
goal step by step.

n = K.getJointDimension()

q = K.getJointState()

w = 1e-4

W = w * np.identity(n) # W is equal the ID_n matrix times scalar w

input("initial posture, press Enter to continue...")

y_target = [0.0, 0.7, 0]

for i in range(10):

# 1st task

F = K.feature(ry.FS.position, ["endeffector"])

y, J = F.eval(K)

# compute joint updates

q += inv(J.T @ J + W) @ J.T @ (y_target - y)

# NOTATION: J.T is the transpose of J; @ is matrix multiplication (dot

product)



# sets joint angles AND computes all frames AND updates display

K.setJointState(q)

# optional: pause and watch OpenGL

K.view()

input("Press Enter to continue...")

For more detail you can watch:
https://www.youtube.com/watch?v=7XeDkjekmy0


